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Abstract—Aerial manipulation has recently attracted increas-
ing interest from both industry and academia. Previous ap-
proaches have demonstrated success in various specific tasks.
However, their hardware design and control frameworks are
often tightly coupled with task specifications, limiting the de-
velopment of cross-task and cross-platform algorithms. Inspired
by the success of robot learning in tabletop manipulation,
we propose a unified aerial manipulation framework with an
end-effector-centric interface that decouples high-level platform-
agnostic decision-making from task-agnostic low-level control.
Our framework consists of a fully-actuated hexarotor with a
4-DoF robotic arm, a whole-body model predictive controller,
and an end-effector-centric interface to receive commands from
the high-level policy. The high-precision end-effector controller
enables efficient and intuitive aerial teleoperation for versatile
tasks and facilitates the development of imitation learning poli-
cies. Real-world experiments show that the proposed framework
significantly improves end-effector tracking accuracy, and can
handle multiple aerial teleoperation and imitation learning tasks,
including writing, peg-in-hole, pick and place, changing light
bulbs, etc. We believe the proposed framework provides one way
to standardize and unify aerial manipulation into the general
manipulation community and to advance the field.

I. INTRODUCTION

Uncrewed Aerial Manipulators (UAMs), which target com-
plex tasks at high altitudes [34], hold significant potential
to reduce human labor in many elevated operations, such as
changing light bulbs on tall towers, inspecting aircraft wings
or turbine blades, and maintaining or painting bridges, which
are not only costly but also pose substantial risks to human
safety. Previous works have demonstrated the ability to achieve
different specific complex aerial manipulation tasks, including
drawing calligraphy [16], grasping [27], perching [21], drilling
[12], etc. However, most previous works have been tailored to
specific tasks, developing unique platforms and algorithms ac-
cordingly, lacking the ability to handle different types of tasks.
In real world scenarios, manipulation tasks can be complex and
typically consist of multiple sub-tasks, requiring the system
and framework to be versatile. For example, changing a light
bulb can involve several motion primitives, including interac-
tion, grasping, insertion, and rotation. This need for versatility
motivates the development of a more general-purpose aerial
manipulation platform. Specifically, on the hardware side, the
platform should be capable of performing a wide range of
tasks, while on the algorithmic side, the control commands
for different subtasks should be unified within a single control
interface.
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Fig. 1. The proposed framework and system can accomplish multiple typical
aerial manipulation tasks precisely and robustly, such as (a) writing ”2025”,
(b) peg-in-hole, (c) pick-and-place, and (d) changing light bulbs.

In robotic manipulation [26], the end-effector-centric (ee-
centric) approach is widely used. It defines tasks and poli-
cies [22, 23] in Cartesian space instead of specific robotic
arm configuration space. By effectively decoupling high-
level policies from low-level control, it enables embodiment-
agnostic policies [35], [9], [32] and policy-agnostic low-level
controllers development [25], enhancing framework versatility,
cross-embodiment adaptability, and algorithm reuse capability
[42]. Although shown the advantage of versatility in the
manipulation field, applying the ee-centric paradigm to aerial
manipulation systems presents significant challenges due to
the UAM’s floating-base dynamics and the coupling effects



between the UAV and the manipulator.
In this work, inspired by the success of end-effector-centric

interfaces in classic manipulation, we propose a unified aerial
manipulation framework with the ee-centric interface to ad-
dress various aerial manipulation tasks in teleoperation and
policy learning. The framework consists of a versatile aerial
manipulation platform capable of executing multiple tasks, a
policy-agnostic controller that precisely tracks the target end
effector state, and an ee-centric policy module responsible
for generating target ee states. In this work, we develop a
fully-actuated hexarotor with a 4 DoF robotic arm, providing
a sufficiently large workspace and wrench space for diverse
tasks. To tackle the challenges mentioned before, we also
develop a whole-body Model Predictive Controller (MPC)
that precisely tracks the target end-effector state, even in the
presence of model uncertainties. Moreover, to bring human
cognitive skills into policy development and benefit from the
ee-centric interface, we develop an ee-centric teleoperation
interface and an imitation-learning-based policy. To the best
of our knowledge, this is the first imitation learning-based
framework for aerial manipulation. Real-world experiments
show that the proposed framework achieves high-precision
end-effector tracking, and enables a wide range of aerial
manipulation tasks, including aerial writing, peg-in-hole, pick
and place, light bulb replacement, etc., as shown in Fig. 1.
We believe the proposed framework provides a step toward
standardizing and unifying aerial manipulation into the broader
manipulation community, advancing the field toward greater
versatility and generalization.

In summary, our contributions are:
1). We reformulated the aerial manipulation problem within

the unified manipulation framework, consisting of a UAM
system, a controller encapsulated by the ee-centric interface,
and a high-level policy.

2). We developed an end-effector-centric whole-body MPC
for aerial manipulation that precisely tracks the targeted end-
effector state while maintaining robustness against distur-
bances through L1 adaptation.

3). We developed an ee-centric teleoperation system and an
imitation-learning-based autonomous system that learns from
human teleoperation demonstration.

4). Rich real-world experiments demonstrated the versatility
of the proposed framework, the effectiveness of the user-
friendly teleoperation interface, and the potential to incorpo-
rate learning-based policies and other manipulation policies.

II. RELATED WORKS

A. Aerial Manipulation

There have been many research efforts exploring aerial
manipulation for various kinds of tasks [29]. Based on the
motion primitives they require, common aerial manipulation
tasks can be categorized into: 1). Aerial Interaction, which
requires maintaining contact with external objects, for tasks
such as inspection [2] [3] [15], aerial writing [24] [37], [18]
or pushing a target [5]. Researchers mostly developed a point-
contact arm such as a rigid rod, and proposed the hybrid

motion-force control framework, although achieving high-
precision tracking performance, struggles to handle scenarios
requiring grasping; 2) Aerial grasping [28], where previous
works mainly focused on designing different custom end-
effectors, such as claw [30] or soft gripper [13]. Some work
also showed amazing results achieving high-speed grasping, or
grasping moving objects [38], but sacrificed payload capacity
or precision due to specialized hardware designs. 3). Aerial
insertion. Typical work includes [31] where they propose a
specific hole searching policy for bolt screwing tasks, and
[40] where they achieved mm-level peg-in-hole task; 4).
Manipulate articulated objects such as doors [33], or valves
[6]. In general, although different works have shown success
on different specific tasks, the specific system design and
algorithm development make the same hardware and algorithm
hard to deploy to different tasks, reducing its potential for
practical long-horizon versatile aerial manipulation tasks. In
our work, we target all these four types of aerial manipulation
tasks, developing a versatile framework to handle all of them.

B. Manipulation with EE-Centric Interface

Defining tasks or commands using ee-centric approaches is
widely adopted in general manipulation fields, as it is more
intuitive and can be cross-embodiment. For example, Båberg
et al. [7] developed a teleoperation interface to enable full
control of the end-effector pose. The Universal Manipulation
Interface (UMI) [9] [17] demonstrates a data-collection and
policy-learning framework that allows direct skill transfer from
in-the-wild human demonstrations to multiple robot embodi-
ments. Their system employs a hand-held gripper and carefully
designed hardware-agnostic policies, showcasing the potential
for ee-centric solutions in multi-platform scenarios. Similarly,
other mobile manipulation strategies, such as N2M2 [20]
[19] and HarmonicMM [43], reduce the operator’s burden by
extracting feasible base motions from end-effector trajectories.
But they generally remain limited to ground robots. Although
several aerial manipulation studies have adopted end-effector-
centric methods [16] [4], they have primarily focused on de-
veloping controllers to track specified end-effector trajectories
without a systematic framework that tackles various tasks
comprehensively. In our work, we propose a unified framework
with the ee-centric interface for versatile aerial manipulation
tasks.

C. Teleportation and Imitation Learning

Developing a robust and practical autonomous aerial manip-
ulation policy is extremely challenging due to complex real-
world environments and high precision and safety require-
ments. Moreover, policies are typically designed to handle
specific tasks and lack the generality to handle unexpected
conditions. Therefore, teleoperation, which takes human effort
into the loop for policy development, attracts researchers’
interest as a practical solution. For example, [1] developed
the UAM with a fully actuated UAV with 0 DoF arm and
controlled the end effector directly by teleoperation, but their
method is highly coupled with the specific UAM design and
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Fig. 2. The proposed end-effector-centric aerial manipulation framework includes the UAM platform, the ee-centric whole-body MPC, and the high-level
policy including an ee-centric teleoperation interface, and an imitation learning-based framework using Action Chunk with Transformer (ACT) [45]. The
high-level policy, either the human teleoperation or learned autonomous policy sends the target end-effector state to ee-centric MPC which then generates
motor commands for the UAM platform to execute.

the system suffers for versatile tasks due to the workspace
limitation. In most structured UAM teleoperation works, users
control each DoF separately [44] or explicitly switch to differ-
ent modes during different phases [10]. Both of these increase
the human teleoperator’s burden and require the teleoperator
to have a rich understanding of the specific hardware system.
Moreover, even if incorporated with human input, the previous
works still have not shown vast versatility in different tasks
and scenarios.

Recently, imitation learning (IL) has demonstrated signif-
icant potential for autonomous policy learning due to its
high data efficiency, straightforward framework, and outstand-
ing performance. Recent progress in both systems, such as
ALOHA [45] and mobile ALOHA [14], and algorithms, such
as ACT [45], and diffusion policy [8], facilitate the success of
long-horizon, contact-rich, complex manipulation tasks. How-
ever, there is no precedent to incorporate such IL-based policy
into aerial manipulation fields due to the lack of a mature
demonstration collection system such as a well-development
teleoperation system, and the lack of a proven framework.
In this work, we develop an intuitive teleoperation system
using the ee-interface framework. It also helps to collect
human demonstration data, enabling us to develop an imitation
learning-based policy for autonomous aerial manipulation.

III. SYSTEM OVERVIEW

Our aerial manipulation system is designed to enable precise
and versatile operations. The system incorporates an end-
effector-centric (ee-centric) interface to decouple high-level
decision-making from low-level control, increasing the frame-
work’s versatility. As shown in Fig. 2, our system consists
of an aerial manipulator platform, an ee-centric whole-body
MPC, and an ee-centric policy module. The hardware platform
consists of a fully-actuated hexarotor and a 4 DoF robotic
arm. The platform has a large enough workspace and wrench
space for different tasks. A motion capture system and onboard

IMUs are used for drone state estimation. The joint encoders
are used to get arm joint angles and the end-effector states are
then calculated based on forward kinematics. The ee-centric
whole-body MPC reads the ee target from high-level policy
and generates the reference trajectory and reference control
for both the UAV and the robotic arm. An L1 online adaption
control term is designed to further improve the tracking
performance. The UAV control commands are then sent to
control allocation to generate the motor commands for the
UAV to execute. At the most high-level, The ee-centric policy
module gets current observations and generates the target ee
states online without the need to consider the specific platform
jointly. We developed two high-level policy modules. The first
one is the ee-centric teleoperation interface that allows human
users to directly control the end-effector pose. Based on the
human demonstration, we adopted an imitation-learning-based
method: Action Chunk with Transformer(ACT) [46], to learn
an autonomous policy. The following sections will introduce
the developed modules accordingly.

IV. HARDWARE DESIGN

A. Fully-Actuated UAV

The foundation of the system is a fully-actuated hexarotor
UAV capable of independently generating six-dimensional
forces and torques. This capability allows precise control
of position and orientation, which is essential for executing
complex aerial manipulation tasks. The robust design en-
sures stability in dynamic environments, while ensuring high-
precision end-effector tracking. We used Tarot680 as the drone
base, 6 KDE 4215XF motor with a 12-inch 2-blade propeller
as our driving force, LiPo batteries for on-board power supply,
an on-board computer Intel Nuc for on-board computation,
and a customized PX4 autopilot for low-level flight control
and information processing.
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Fig. 3. UAM hardware system design, illustrating the key components:
(1) fully-actuated hexarotor as the base structure, (2) 4 Dof manipulator, (3)
Intel RealSense cameras for vision-based perception and feedback, and (4)
end-effector gripper for object interaction. The frame notations in the right
diagram represent the coordinate axes associated with the system.

B. Manipulator

The UAV integrates a 4-DOF robotic manipulator optimized
for versatile and precise task execution. The arm features three
pitch joints and one roll joint, driven by Dynamixel XM540
and XM430 servo. Its configuration allows high-precision
operations. The system achieves whole-body manipulation
capabilities by combining the UAV’s actuation with the ma-
nipulator, enhancing task execution across diverse scenarios.
The manipulator includes a modular end-effector, allowing
interchangeable tools for specific tasks. For instance, a two-
finger gripper with replaceable tips enables precision handling,
while a circular gripper is ideal for changing light bulbs.

C. Perception

In this work, we mainly focus on the in-door environment.
We use both the motion capture system and the PX4 onboard
IMU for drone state estimation. The motion capture system
provides the UAV’s position and can be replaced with other
localization methods, such as SLAM. The manipulator arm
joint angles are estimated by the joint encoders and the
end-effector states are online calculated based on forward
kinematics (FK).

To further improve drone perception for teleoperation and
autonomous policy development, we equip the aerial manip-
ulator with two RealSense RGBD cameras. One camera is
mounted on the UAV base to capture a broad view of the
entire workspace, while the other is positioned near the end-
effector to deliver detailed close-up views of the target area.
This dual-camera setup ensures teleoperators and vision-based
policies can maintain precise control and situational awareness
during complex manipulation tasks.

V. SYSTEM MODELING

A. Frames and Notation

The frames depicted in the Fig 3 are defined as follows: FW

is an inertial world frame with its z-axis opposite to the gravity
vector, ensuring ẑW points upward. FB is rigidly attached to
the UAV’s body at its center of gravity, with axes (xB , yB , zB)
aligned with the UAV body frame. FD is the manipulator base
frame, centered at the attachment point of the manipulator on
the UAV. The transformation from FB to FD is defined by a

constant translation pD ∈ R3 and a fixed orientation RD
B ∈

SO(3). FE is the end-effector frame with axes (xE , yE , zE),
where xE is aligned with the roll axis of the 4th joint of
the manipulator, while yE remains horizontal. Other symbols
in the paper are listed in Table I for the convenience of the
following discussion.

TABLE I
NOTATION OVERVIEW

Symbol Dimension Description

m R Mass
I R3×3 Inertia tensor

p, RW
B R3, SO(3) UAV position expressed in FW and orien-

tation between FB and FW

v R3 Generalized velocity, expressed in FW

τ R6 Control wrench
τext R6 External disturbance wrench
gW R6 Gravity vector in FW

pE , RW
E R3, SO(3) End-effector position expressed in FW and

orientation between FE and FW

θ R4 Current joint angles
θcmd R4 Commanded joint angles
d R4 Joint servo disturbance
ζ R3×4 DH parameter with the ith joint component

[θi, li, ai, αi]
T

β R Joint motor delay constant

B. Fully-Actuated UAV Dynamics

A fully-actuated UAV is adopted as the base of the aerial
manipulator, which can generate six-dimensional force and
torque independently. Let the generalized position of the UAV
be represented as q = [p,RW

B ], where p ∈ R3 represents
the position of the UAV in the global coordinate frame, and
RW

B ∈ SO(3) represents its orientation. The generalized
velocity is denoted as v = [ṗ,ω], where ω ∈ R3 is the angular
velocity.

The UAV dynamics can be formulated using Newton-Euler
equations for rigid body motion as follows:

Mv̇ +Cv + g = τ + τcxt (1)

with inertia matrix M ∈ R6×6, centrifugal and Coriolis term
C ∈ R6×6, gravity wrench g ∈ R6, control wrench τ ∈ R6

from the UAM actuators, and unknown external wrench τext ∈
R6 from model mismatch and manipulator interaction.

Specifically, we have

M = diag
([

mI3×3 I
])

, (2)

C = diag
([

m[ω]× −I[ω]×

])
, (3)

g = m diag
([

RW
B 03×3

])
gW . (4)

where m is the vehicle mass, I is the moment of inertia
at the vehicle center of mass in the body frame, gW =
[0, 0, g, 0, 0, 0]⊤ is the gravitational acceleration in FW , and
[∗]× is the skew-symmetric matrix associated with vector ∗.



C. Manipulator Kinematics

In this work, the manipulator employs servos as joint
actuators, which cannot accurately control joint torques di-
rectly. Therefore, only the kinematics of the manipulator is
considered in the system modeling. The interaction between
the manipulator and the fully-actuated UAV is treated as a
disturbance and is compensated in real-time using L1 adaptive
control.

We use the standard Denavit–Hartenberg (DH) convention
[11] to model the forward kinematics of our 4-DoF robotic
arm. Under the DH formulation, the adjacent frame trans-
formation T i−1

i is characterized by four parameters θi, di,
ai, αi, where the first one is the joint angle and the last
three are pre-identified and fixed during robot movement.
Define DH parameter ζi = [θi, li, ai, αi]

⊤ ∈ R4. The frame
transformation from end-effector frame to arm base body
frame can be written as

TD
E (θ; ζ) =

4∏
i=1

T i−1
i (θi; ζi) (5)

Then the transformation from world frame to end-effector
frame can be computed as follows:

TW
E =

RW
E pW

E

01×3 1

 = TW
B · TB

D · TD
E (6)

where TW
B can be obtained from UAV odometery and TB

D is
a fixed transformation between the manipulator base and the
UAV.

The accurate DH parameters are obtained through system
identification. We collected motion data of the manipulator
using a motion capture system and compute the DH parameters
via least squares regression. The detailed parameter values are
presented in Table III.

D. Manipulator Motor Delay

The servo motor dynamics are approximated as first-order
systems to account for command-to-state delay. For the 4-DoF
manipulator, the relationship between commanded joint angles
θcmd ∈ R4 and actual joint angles θ ∈ R4 is governed by:

diag(β)θ̇ + θ = θcmd + d (7)

where β ∈ R are the joint-specific time delay constants, and
d ∈ R4 is the unknown disturbance in servo control. This
formulation captures the transient response characteristics of
each actuator. The motor delay coefficients β are identified
alongside the DH parameters using least squares regression,
with the results presented in Table III.

VI. END-EFFECTOR-CENTRIC WHOLE-BODY CONTROL
WITH ONLINE ADAPTATION

Given the over-actuated nature of our system and the
users’ primary focus on the end-effector motion, we employ
model predictive control to regulate the end-effector trajectory.
This approach enables whole-body coordination between the

manipulator and the fully-actuated UAV, ensuring precise and
efficient end-effector motion control. As discussed in previous
sections, the complex interaction between the manipulator and
the UAV is treated as the disturbance in the modeling stage,
which introduces uncertainty in the nominal model used in
the whole-body MPC. To mitigate the disturbances and model
uncertainties, we integrate the L1 adaptive controller, ensuring
robust disturbance compensation and accurate tracking perfor-
mance. The diagram of the control algorithm is illustrated in
Fig. 2.

A. End-Effector-Centric Model Predictive Controller

In the following, we describe the whole-body MPC frame-
work used to optimize the end-effector reference trajectory.

For the MPC formulation, we define the following state and
control variables:

x :=
[
pE RW

E v θ
]

u :=
[
τ θcmd

]
(8)

We use the following error functions for the position of the
end-effector, the UAM velocity, the wrench control input, and
the manipulator joint angle, respectively:

ep = pE − pr
E (9a)

eR =
1

2

(
RE

W

r⊤RE
W −RE

W

⊤
RE

W

r)∨
(9b)

ev = v − vr (9c)
eθ = θ − θr (9d)
eu = u− ur (9e)

where (∗)∨ is the vee-operator that extracts a vector from a
skew-symmetric matrix ∗, and (·)r represents the reference
state values. The reference signals pr

E and RW
E are provided

by a high-level teleoperation command or derived from an
imitation learning policy. Manipulator default joint angle θr

is pre-selected, and reference control ur = [03, θ̂], where θ̂ is
the current joint states.

The MPC formulation minimizes a cost function over a
finite time horizon H while subject to system dynamics and
constraints:

uopt = argmin
u

{
Le(xH ,xr

H) +
H∑
i=1

Lr(xn,x
r
n,un)

}
(10a)

s.t. xn+1 = fdyn(xn, τn) (10b)
x0 = x̂, xn ∈ X (10c)
ulb ≤ u ≤ uub (10d)

Eq. (10a) defines the optimization objective, where H repre-
sents the discrete prediction horizon. The stage and terminal
costs, Lr and Le, are quadratic functions of the tracking errors,
given by e⊤i Qiei, where xi ∈ {ep, eR, ev, eθ, eu}. The gain
matrices Qi are positive definite and tuned experimentally to
balance precision and robustness.

Eq. (10b) enforces the discrete-time system dynamics, incor-
porating the fully actuated UAV dynamics Eq. (1), manipulator
kinematics Eq. (6), and joint servo dynamics Eq. (7). The



continuous system dynamics are discretized using a fourth-
order Runge-Kutta (RK4) integration scheme to maintain
numerical stability and accuracy. Disturbances τext and d
are ignored in the MPC formulation and solving process, but
will be handled in the following Section VI-B via online L1
adaptation.

Eq. (10c) introduces state constraints, where x̂ represents
the latest state estimate. The feasible state space X is defined
by: 1) Self-collision avoidance constraints: ensuring that the
manipulator does not collide with the UAV structure. 2) Envi-
ronment collision constraints: preventing the UAV contact with
external obstacles. 3) Safety constraints: including velocity
limits and joint angle restrictions to ensure safe operation.

Eq. (10d) imposes actuation limits on the aerial manipulator,
where ulb and uub define the lower and upper bounds of the
control inputs.

The end-effector centric whole-body MPC formulation is a
general framework that can adapt to various vehicle types and
can extend to systems with multiple end-effectors. The control
inputs, UAV dynamics, and arm kinematics can be tailored
to specific vehicle and manipulator configurations, ensuring
flexibility across different aerial manipulation systems.

B. L1 Online Adaptation

In this section, we adopt the L1 adaptive controller from
[41] in both the fully-actuated UAV motion control and the
manipulator joint angle tracking control, to compensate the
disturbance τext in Eq. (1) and d in Eq. (7).

The adaptation law is designed by

M ˙̂v +Cv̂ + g = τ + τ̂ext +Av(v̂ − v) (11a)

τ̂ ′
ext = −(eAvdt − I6×6)

−1Ave
Avdt(v̂ − v) (11b)

τ̂ext ← low pass filter(τ̂ext, τ̂ ′
ext) (11c)

where v̂ ∈ R6 denotes the estimated UAV velocity, Av is
a Hurwitz matrix, dt is the discretization step length, and
τ̂ext ∈ R6 encapsulates the unknown wrench disturbances.
Here Eq. (11a) is a velocity estimator and Eq. (11b) and Eq.
(11c) update and filter the disturbance τ̂ext.

Thus, the total UAV wrench control command τ ∗ is com-
puted as

τ ∗ = τmpc + τ̂ext (12)

Similarly, the L1 adaptive controller for the manipulator
joint angles is formulated to compensate for dynamic distur-
bances and model uncertainties:

diag(β)
˙̂
θ + θ̂ = θcmd + d̂+Ad(θ̂ − θ), (13a)

d̂′ = −(eAddt − I4×4)
−1Ade

Addt(θ̂ − θ), (13b)

d̂← low pass filter(d̂, d̂′). (13c)

where θ̂ is the estimated joint state, and the disturbance
term d̂ ∈ R4. Thus, the final joint control command θ∗,
incorporating the adaptive disturbance compensation, is given
by:

θ∗ = θcmd + d̂. (14)

VII. EE-CENTRIC TELEOPERATION AND POLICY
LEARNING

As we mentioned, our framework enables the decoupling
between the high-level policy and low-level controller, while
the interface between them is only the ee-centric interface.
This allows the policy to be embodiment-agnostic, eliminating
the need to consider low-level tracking control. In this section,
we introduce two aerial manipulation system we developed
based on this framework: ee-centric aerial teleoperation system
and imitation-learning-based autonomous aerial manipulation
system.

A. EE-Centric Aerial Teleoperation

We developed an aerial manipulation teleoperation system
with the ee-centric interface, allowing the operator to focus
solely on controlling the target end-effector pose, as if they
had complete control of a freely moving hand in 3D space.

Robotic teleoperation requires bidirectional communication
between the user and the robot. For the user-to-robot com-
mand, we developed a gamepad program so that the user can
control the end-effector position pE

r and orientation RW
E

r

with buttons and joysticks.
For robot-to-user communication, different from tabletop

and mobile manipulation settings, in aerial manipulation, the
user often lacks direct visual access to the workspace, neces-
sitating reliance on onboard perception systems. In our work,
we address this limitation by providing real-time visualization
of RGB images captured from cameras mounted on both the
end-effector and the base of the UAM. These images are
displayed on monitors for continuous user observation. Further
enhancing teleoperation efficacy, we have found it crucial to
also visualize the user’s inputs directly. To this end, we render
the commanded target end-effector pose trajectories in real-
time within 3D world frame plots, as illustrated in Fig. 2. This
dual approach of visual feedback not only improves spatial
awareness but also significantly enhances user performance in
teleoperated tasks.

B. EE-Centric Policy Learning

To establish an autonomous aerial manipulating policy
for versatile tasks, we develop an ee-centric policy learning
framework based on imitation learning. Specifically, we adopt
Action Chunk with Transformer (ACT) as the network struc-
ture [45]. ACT utilizes a Conditional Variational Autoencoder
(CVAE) where the encoder compresses action sequences and
joint observations into a latent style variable. The transformer-
based decoder generates action sequences from the latent
variable (only during training and set to be the mean of the
prior during testing), current joint observations, and encoded
image features. The action chunking mitigates compounding
errors and enhances the model’s ability by predicting multiple
future actions at once.

In this work, the ACT policy as well as policy observation



and action are defined as follow:

at:t+K = πφ(ot) (15)

ot =
{
IE , IB , pE , RW

E t

}
(16)

at =
{
pr
E , RW

E

r
}
t

(17)

where π denotes the ACT policy, φ is the network parameter,
K is the chunking size, IB , IE are RGB images from the
base camera and the end-effector camera, each with 640×480
resolution. pE , RW

E , pr
E , RW

E
r denotes the current and target

UAM position and orientation, respectively. We use ResNet-18
as the backbone to encode the RGB images before inputting
them into the transformer encoder. The flowchart of the
algorithm implementation is illustrated in Fig. 2.

VIII. EXPERIMENTS

To validate the effectiveness of our proposed framework,
we conduct a series of experiments focusing on end-effector
trajectory tracking, aerial teleoperation, and policy learning
for autonomous aerial manipulation. Our goal is to assess
whether the proposed whole-body MPC with L1 adaptation
approach enhances trajectory tracking accuracy. Additionally,
we evaluate how the ee-centric interface facilitates intuitive
and precise teleoperation, reducing operator burden and im-
proving task execution in a series of teleoperation tasks.
Finally, we investigate whether the high-quality teleoperation
demonstrations can be leveraged to train imitation learning-
based policies for autonomous aerial manipulation in both
simulation and real-world environments.

A. Experimental Setup

1) Trajectory Tracking Task Setup: To show the effective-
ness of our proposed method in end-effector trajectory tracking
tasks, we perform an comparsion between our control methods
against two baseline approaches:

• w.o. MPC: This baseline disregards both the fully-
actuated UAV and arm dynamics, relying solely on in-
verse kinematics (IK) for motion planning. The UAV
follows the desired trajectory generated by the IK planner
using a cascade PID controller.

• w.o. L1: This baseline excludes the L1 adaptive com-
ponent, leaving disturbances from UAV and manipulator
interactions and modeling uncertainties uncompensated
during control execution.

We conduct experiments with three types of reference
trajectories for the end-effector, each lasting 60 seconds. The
setpoint trajectory requires the aerial manipulator to keep the
end-effector hover at a fixed position pE = [0.0, 0.0, 1.3].
The ellipse trajectory requires to track a sinusoidal trajectory
defined as pE = [0.5 sin(0.3t), 0.0, 1.4+0.2 sin(0.3t+0.75)].
The figure-8 trajectory requires to track a trajectory pE =
[0.1+ 0.6 sin(0.3t), 0.0, 1.35+ 0.25 sin(0.6t)]. The maximum
velocity in the reference trajectory is about 0.2 m/s. The pitch,
row and yaw attitude of the end-effector is fixed at zero during
the tracking. Root Mean Square Error (RMSE) is used as
the tracking performance evaluation criterion. Each trajectory

TABLE II
CONTROLLER PARAMETERS

Horizon Length T 2.5 s
Horizon Steps N 100

State Cost Qp diag(12, 12, 12)

Rotation Cost QR diag(10, 10, 10)

Velocity Cost Qv diag(0.1, 0.1, 0.1)

Joint Angle Cost Qθ diag(0.1, 0.1, 0.1)

Control Cost Qu diag(0.03, 0.03, 0.03, 0.1, 0.1, 0.1)

is repeated three times to compute the mean and standard
deviation.

2) Aerial Manipulation Task Setup: We conducted a series
of experiments to evaluate the capabilities and applications
of our aerial manipulation system. We select different typical
tasks from each category we discussed in Sec. II-A, including:

• Aerial Writing: Drawing a target shape (the digit
“2025”) on a vertical wall, with an overall size of approxi-
mately 3m×0.8m. This task required precise specification
and tracking of the end-effector (EE) pose trajectory
while maintaining stable contact with the surface.

• Aerial Peg-in-Hole: Inserting a 20mm diameter pole into
a 50mm diameter hole positioned around 150cm above
the ground.

• Rotate Valve: Manipulating the articulated valve by
grasping its handle and rotating it along a 20cm diameter
circle, emulating industrial valve manipulation.

• Aerial Pick and Place: Grasping and placing various
objects with different shapes and sizes including the
screwdriver, pen, tape, and glue bottle.

• Unmount Light Bulb: Grasping a mounted light bulb
and unscrewing it out of the socket.

• Mount Light Bulb: A long horizon task that requires a
sequence of motion, including inserting a light bulb into
a socket, screwing it in, and subsequently turning it on
by pressing the button.

For different tasks, different end-effectors are adopted, in-
cluding the parallel jaw gripper for the pick and place and
peg-in-hole task, a passive elastic claw for grasping the light
bulb, and a bucket-shaped gripper for rotating the valve.

B. Implementation Details

The optimal control problem in the ee-centric MPC is
implemented using ACADOS [39] with a 25ms discretisation
step and a 2.5s constant prediction horizon, running in 100
Hz, and other controller parameters are listed in Table II. The
control output is executed in a receding horizon style, where
at each iteration, only the first control input u0 is applied to
the system.

Since both the L1 adaptive controller and the MPC con-
troller require accurate system modeling fdyn to achieve ef-
fective control performance, we perform system identification
to estimate uncertain parameters shown in Table III. We excite
the system with two types of motions. First, arm motion-only
trajectories are executed while keeping the UAV stationary to



TABLE III
SYSTEM IDENTIFICATION RESULTS

Mass Matrix M diag(0.105, 0.121, 0.101, 0.025, 0.011, 0.013)

Motor Delay β (0.66, 0.68, 0.81, 0.85)
Joint 1 DH Param ζ1 d1 = 0.0, a1 = 0.363, α1 = 0.10

Joint 2 DH Param ζ2 d2 = 0.050, a2 = 0.441, α2 = −0.10

Joint 3 DH Param ζ3 d3 = 0.0, a3 = 0.007, α3 = −1.578

Joint 4 DH Param ζ4 d4 = 0.076, a4 = 0.200, α4 = 0.0

calibrate the DH parameters ζ and joint servo delay β. These
trajectories ensure that the manipulator kinematic parameters
and joint motor dynamics accurately reflect the actual manip-
ulator motion response. Second, UAV free-flight trajectories
are conducted to identify the drone dynamics described in Eq.
(1).

C. Experiment I: Trajectory Tracking

Table IV shows the comparison of our approach against
w.o. MPC and w.o. L1 baselines in three type of reference
end-effector trajectories. The results show that our proposed
method achieves the lowest tracking error, with approximately
1 cm in hover and 4 cm during motion. In contrast, the
baseline w.o. L1 exhibits 1.3 cm and 6.5 cm, respectively,
while the baseline w.o. MPC performs the worst, with 2 cm
in hover and 10 cm in motion. The increased tracking error
is primarily due to the complex interaction between the UAV
and the manipulator, where simultaneous movement introduces
dynamic coupling effects that make precise tracking more
challenging.

Fig. 4 shows that our method (blue) demonstrates the best
tracking performance. The baseline w.o. L1 (green) exhibits
overshoot in the X and Z axes and bias in Y, indicating
that the L1 controller effectively mitigates both transient and
steady-state errors caused by model uncertainties. The baseline
w.o. MPC (orange) suffers from significant motion lag, as
its inverse kinematics fail to account for UAV dynamics.
Fig. 5 depicts the error distribution for all trajectories using
the proposed methods and two baselines, showing that our
method achieves the smallest and most centered error, whereas
the L1 baseline exhibits steady-state errors and the MPC
baseline displays a broader error spread due to dynamic lag.
These results confirm the effectiveness of our proposed control
scheme.

Despite the high tracking performance of the proposed
methods, Fig. 6 reveals that tracking error increases at lower
altitudes (around 1m), likely due to unmodeled ground and
wall effect disturbances. Additionally, oscillations in the end-
effector trajectory are observed across all methods. We notice
servo backlash (around 0.5◦ dead zone), which results in a
2 cm control dead zone in the end-effector task space, lim-
iting tracking precision during fast UAV maneuvers. Further
improvements can be achieved through more accurate system
modeling and higher-precision hardware to enhance tracking
accuracy.

TABLE IV
END-EFFECTOR TRAJECTORY TRACKING PERFORMANCE

RMSE (cm) Setpoint Ellipse Figure-8

Our Method 1.00 ± 0.11 3.98 ± 0.41 4.62 ± 0.58

w.o. L1 Adaptation 1.33 ± 0.16 6.67 ± 0.42 6.28 ± 0.50

w.o. MPC 2.07 ± 0.19 11.25 ± 0.83 9.64 ± 1.07
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Fig. 4. End-effector tracking performance of aerial manipulator in Figure-
8 trajectory. Tracking results indicate that the w.o. MPC baseline exhibits
significant tracking lag, while the w.o. L1 baseline suffers from static tracking
errors due to model mismatches.

D. Experiment II: Aerial Teleoperation

First, we demonstrated the effectiveness and versatility of
the proposed teleoperation system, by targeting aerial writing,
rotating the valve, aerial pick and place, unmount, and mount
light bulb tasks. As shown in Fig. 8 and Fig. 9, human
teleoperators can easily achieve all aerial manipulation tasks
with little learning and operation cost. One key success factor
we attribute is the ee-centric interface, which reduces human
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effort and improves the quality of teleoperation data for future
policy learning.

In a subsequent experiment, we evaluated the benefits of di-
rectly controlling the end-effector’s pose using our framework
against controlling each degree of freedom (DoF) for UAVs
and robotic arms [44] in a simulated peg-in-hole task. The
teleoperation command trajectories are illustrated in Fig. 7a.
Direct control of the end-effector allowed operators to issue
more fluid command trajectories, significantly enhancing the
precision of end-effector movements and decreasing the time
required to complete the task.

E. Experiment III: Learning from Demonstration

1) Simulation Experiments: We first demonstrate our learn-
ing from demonstration framework in Mujoco [36] simulator
with four tasks: (i) peg-in-hole, (ii) rotate valve, (iii) pick and
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Fig. 8. Aerial Teleoperation Manipulation Tasks. We target 1) Aerial Writing:
UAM with a marker pen writes ’2025’ on a whiteboard. 2) Rotate Valve: UAM
grasps the handle and rotates the valve with one loop. 3) Pick-and-Place: UAM
grasps an object and relocates it to a designated area.

place and (iv) open and retrieve, as shown in Fig. 10 (a). To
collect demonstrations, we use a scripted policy for each task.
Every episode of the scripted policy lasts about 12 seconds for
each task. We collect 50 episodes for each task and the control
frequency is 50 Hz. Note that with our ee-centric interface,
we do not consider any joint configuration when collecting
demonstrations, which allows us to efficiently collect smooth
demonstrations without tediously adjusting each joint position
to complete the task. Our ACT policy for each task in
simulation is trained with 100 action chunk size and limited
5k epochs. After training, we choose the policy with the least
validation loss to perform 50 evaluation trials. The evaluation
result is shown in Table V.

To showcase the advantage of learning from an ee-centric
demonstration compared to a joint space demonstration, we
use the same demonstration trajectory but change the obser-
vation and action to be in UAM configuration space, i.e., the
UAV position and orientation, and each joint angle of the
robotic arm. After that, we train a joint space ACT policy with
the same training setting as the ee-centric ACT policy, except
that the EE pose in the observation and action space is replaced
by the drone base pose and full manipulator joint angles.
We compare their success rate in evaluation summarized in
Table V. It shows that with limited 5k training epochs, ee-
centric policy outperforms joint space policy in challenging
tasks including pick and place, peg in hole, and open and
retrieve. As illustrated in Fig. 7b, the ee-centric policy targets
the pickup region and the place point more precisely, while
the joint space policy is easier to generate wrong targets.
Overall, the experimental results reveal several complementary
insights:

• Geometric Precision Advantage: Our ee-centric pol-
icy achieves 2.5× higher success rate in geometrically
sensitive peg in hole task, directly benefiting from task-
space supervision that eliminates the accumulated EE
error from the joint space.
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Fig. 9. Long horizon aerial teleoperation light bulb changing task. UAM grasps the light bulb and unscrews it down during the first flight. And it inserts,
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Fig. 10. Task setup in Mujoco simulation, including (a) Peg-in-Hole; (b)
Rotate the Valve; (c) Pick and Place; and (d), a long horizon Open and Retrieve
task.

TABLE V
IMITATION LEARNING SIMULATION SUCCESS RATE

Rotate Valve Pick & Place Peg in Hole Open & Retrieve

Joint Space 50/50 38/50 9/50 8/50

EE (Ours) 50/50 48/50 23/50 17/50

• Multi-Skill Composition: In the open and retrieve task,
our ee-centric policy achieves 2× higher success rate
than joint space policy, which demonstrates its inherent
advantages in multi-skill decomposition and execution.

2) Real-world Experiments: We adopt the aerial peg-in-
hole task to demonstrate our capability to derive an au-
tonomous policy from human demonstrations for aerial ma-
nipulation in the real world. The task configuration, illustrated
in Fig. 11, involves a hole with a diameter of 5 cm and

a peg of 2 cm in diameter. We collected 12 episodes of
demonstration data via human teleoperation, with each episode
taking approximately 2 minutes, culminating in a total of
around 24 minutes of operational data and about 1 hour of
wall-clock time. The data was downsampled to 10 Hz, and
the action chunk size was empirically set to 100 during the
training process. After training through 100,000 epochs, the
policy with the least validation loss is selected. This learned
policy successfully completed 2 out of 3 real-world peg-in-
hole tests. The failure in the unsuccessful trial was due to
the policy commands UAM to be too low as it approached
the hole, which triggered a premature safe exit. These results
underline the potential of learning-based approaches in aerial
manipulation under our developed framework, though also
highlight the need to improve safety measures and develop
robust recovery policies, especially for aerial manipulation.

F. Discussion
The experiments demonstrate our framework in end-effector

trajectory tracking, aerial teleoperation, and policy learning
for autonomous aerial manipulation. The precise end-effector
control framework demonstrated superior end-effector track-
ing accuracy with minimal error. The high-precision control
enables efficient user-friendly aerial teleoperation, allowing
human operators to perform multiple complex tasks, which
also helps high-quality demonstration data collection. Lever-
aging the ee-centric framework, advanced high-level policies
such as imitation learning can be easily incorporated into
the aerial manipulation field, which further expands the field
development.

IX. LIMITATIONS

Although we have demonstrated the proposed framework
through various real-world experiments, there are still sev-



Fig. 11. Autonomous aerial manipulation peg-in-hole policy experiment. The UAM inserts the peg precisely, highlighting both the accuracy of the learned
policy and the low-level controller.

eral limitations due to time constraints and methodological
limitations. Firstly, all of our experiments were conducted
indoors within a motion capture system, where we achieved
millimeter-level state estimation of the UAV and end-effector
states using forward kinematics. This setup limits its practical
application in real-life scenarios. Secondly, the current safety
constraints are model-based, which further restricts practi-
cal applications. Incorporating onboard perception to detect
obstacles and generate safety constraints in real-time will
be our next step, as various studies have demonstrated the
feasibility of UAV collision-free flight. Thirdly, the current
performance is limited by the robotic arm actuators, which
have relatively large backlash and would generate unavoidable
vibrations. Finally, although the proposed framework, which
decouples different modules, demonstrates the potential for
cross-platform compatibility and integration with general ma-
nipulation fields, more real-world experiments are planed to
take to further validate its effectiveness.

X. CONCLUSION

This work presents a unified aerial manipulation framework
with the ee-centric interface for versatile aerial manipulation
tasks. Our system includes a versatile hardware platform that
consists of a fully actuated UAV and a 4-DOF manipulator,
a whole-body MPC to ensure precise end-effector tracking,
and the ee-centric high-level policy, where we developed
both an intuitive teleoperation and an imitation learning-based
autonomous policy. Through extensive real-world experiments,
we demonstrated the system’s versatility across various aerial

manipulation tasks, including writing, peg-in-hole, pick-and-
place, valve rotating, and light bulb replacement. The proposed
framework achieved high precision, adaptability, and robust
performance, making it a significant step toward standardizing
aerial manipulation within the broader manipulation field.
Future work will extend the framework’s applicability to
outdoor environments, incorporate onboard perception for ob-
stacle avoidance, and further improve the end-effector tracking
performance.
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